Interaction models for functional regression
نویسندگان
چکیده
منابع مشابه
Interaction models for functional regression
A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids o...
متن کاملMultivariate Functional Regression Models for Epistasis Analysis
To date, most genetic analyses of phenotypes have focused on analyzing single traits or, analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power, and hold the key to understanding the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex tra...
متن کاملFunctional ANOVA Models for Generalized Regression
Functional ANOVA models are considered in the context of generalized regression, which includes logistic regression, probit regression and Poisson regression as special cases. The multivariate predictor function is modeled as a speci ed sum of a constant term, main e ects and interaction terms. Maximum likelihood estimates are used, where the maximizations are taken over suitably chosen approxi...
متن کاملFunctional Models for Regression Tree Leaves
This paper presents a study about functional models for regression tree leaves. We evaluate experimentally several alternatives to the averages commonly used in regression trees. We have implemented a regression tree learner (HTL) that is able to use several alternative models in the tree leaves. We study the effect on accuracy and the computational cost of these alternatives. The experiments c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2016
ISSN: 0167-9473
DOI: 10.1016/j.csda.2015.08.020